
EchoPrime Whitepaper

EchoPrime: A Verifiable Oracle for
Deterministic Safe Prime Generation with

On-Chain Audit Trails
Darren J. Edwards, Ph.D.∗

Founder, Mikoshi Ltd
mikoshiuk@gmail.com

Mikoshi Ltd – EchoPrime
www.echoprime.xyz

February 9, 2026

Abstract

EchoPrime is an Ethereum-compatible oracle and cryptographic primitive for the
verifiable publication of deterministic safe primes. Given a symbolic index n ∈ N, the
system projects a candidate safe prime p = 2q + 1, evaluates it against a structural
verification layer based on Lucas’ theorem, confirms primality, and publishes the result
on-chain with full trace metadata.

No existing system combines deterministic index-based projection with on-chain
auditability and structural verification traces. EchoPrime fills this gap by replacing
opaque, entropy-dependent prime generation with a reproducible, publicly auditable
pipeline. The system is applicable to trusted setup ceremonies for ZK rollups, group
parameter generation in MPC protocols, Diffie–Hellman key exchange, and RSA pa-
rameter sourcing.

This paper describes the estimator design, the structural verification mechanism,
million-scale empirical validation results, and the on-chain oracle architecture.

1 Introduction
Safe primes p such that q = p−1

2
is also prime are foundational to many cryptographic pro-

tocols, including zero-knowledge proofs [1], multiparty computation [2], secure key exchange
[3], and digital signature schemes [4]. Traditional safe prime generation relies on entropy-
heavy random sampling followed by probabilistic primality testing. These methods produce

∗Ph.D. in Computational Modelling of Cognition.

1



correct results but are non-deterministic: given the same inputs, they yield different outputs,
and there is no intrinsic record of why a particular prime was chosen.

EchoPrime addresses this by introducing a public, Ethereum-compatible oracle for the
verifiable publication of safe primes. Rather than relying on random sampling, EchoPrime
projects candidate primes from a deterministic estimator function, evaluates them using a
structural verification layer, confirms primality, and records the full trace on-chain. Every
published prime is deterministically reproducible from its index, accompanied by a numeric
verification score, and permanently anchored in an auditable smart contract registry.

The system’s core contributions are:

1. Deterministic index-to-prime projection. A closed-form estimator maps natural
number indices to candidate safe primes, enabling reproducible generation without
entropy.

2. Structural verification via Lucas’ theorem. A scoring layer based on binomial
coefficient divisibility provides a deterministic, reproducible primality proxy that pro-
duces an auditable numeric trace for each candidate.

3. On-chain publication with full trace metadata. Verified primes, their indices,
structural scores, and primality verdicts are recorded on an Ethereum-compatible
blockchain and emitted as indexable events.

4. Composable oracle architecture. The smart contract registry is queryable by
other contracts, ceremony tooling, and off-chain systems, enabling integration into ZK
rollups, MPC protocols, and trusted setup pipelines.

Tools such as OpenSSL can generate primes deterministically given a seed, and standard
libraries provide efficient probabilistic primality testing. EchoPrime’s contribution is not
in the generation or testing of primes per se, but in combining a deterministic index-based
projection pipeline with on-chain auditability and structural verification traces—creating a
publicly inspectable record that links each prime to its derivation.

2 Estimator Design
The EchoPrime estimator is a closed-form function that maps a natural number index n to
a candidate safe prime p. The estimator targets the structured regions of the number line
where safe primes are known to be relatively dense, using the asymptotic distribution of
primes and safe primes to calibrate its projection.

2.1 Asymptotic Context
The prime counting function satisfies π(x) ∼ x/ ln x [10], and the density of safe primes
follows πsafe(x) ∼ C · x/ ln2 x, where C is the Hardy–Littlewood twin prime-like constant for
safe primes [5]. The quadratic logarithmic denominator reflects the requirement that both
p and q = (p− 1)/2 must be prime.

2



2.2 Projection Formula
The estimator computes a candidate from index n as:

p̂(n) = 2 ·
⌊
α · n · ln2(n+ 2)

⌋
+ 1

where α is an empirically calibrated constant that adjusts the projection density, derived from
the Bateman–Horn conjecture [6]. The ln2 factor compensates for the quadratic thinning
of safe primes, and the floor-and-odd construction ensures each candidate is odd. The
corresponding Sophie Germain candidate is q̂ = (p̂− 1)/2.

This formula is fully deterministic: the same index always produces the same candidate.
There is no randomness, no entropy source, and no dependence on system state. Any party
with the formula and the constant α can independently reproduce every candidate.

2.3 Design Philosophy
The estimator does not attempt to enumerate all safe primes. Instead, it projects into regions
of the number line where safe primes are statistically likely, producing a subset of candidates
that can be verified efficiently. The design philosophy is:

Project coarsely → Verify precisely → Publish confidently

The estimator’s role is to provide a reproducible, index-addressable candidate space. The
verification layer (Section 3) and primality confirmation ensure that only valid safe primes
are published.

3 Structural Verification via Lucas’ Theorem
Each candidate produced by the estimator is evaluated using a structural verification layer
before primality confirmation. This layer produces a numeric collapse score in the range
[0, 1] that serves as a deterministic primality proxy.

3.1 Mathematical Basis
The scoring mechanism is based on a well-known consequence of Lucas’ theorem [7]: for any
prime p and integer k with 1 ≤ k ≤ T (where T is a fixed window size, typically T = 128), the
binomial coefficient

(
p
k

)
is divisible by p. Equivalently,

(
p
k

)
≡ 0 (mod p) for all 1 ≤ k ≤ p−1.

For composite numbers, this property generally fails for at least some values of k within
the window. The collapse score measures the fraction of the window over which the divisi-
bility property holds:

S(n, T ) =
1

T

T∑
k=1

1

[(
n

k

)
≡ 0 (mod n)

]
For any prime p > T , all binomial coefficients

(
p
k

)
for 1 ≤ k ≤ T are divisible by p, so

S(p, T ) = 1.0. This is a direct consequence of Lucas’ theorem and is not novel mathematics.

3



The value of the score is not as a primality test—standard deterministic tests are more
efficient for that purpose—but as a structural verification trace: a reproducible numeric
value that is permanently attached to each published prime, providing an auditable record
of structural evaluation.

3.2 Role in the Pipeline
The collapse score serves several purposes within EchoPrime:

• Auditable trace. Each published prime carries a numeric score that any party can
independently recompute and verify.

• Composite filtering. Composite candidates generally receive scores below 1.0, en-
abling efficient pre-filtering before expensive primality confirmation.

• On-chain metadata. The score is published alongside the prime in the oracle con-
tract, providing queryable structural metadata for downstream consumers.

After scoring, candidates undergo standard deterministic primality testing [8, 9] as a final
confirmation. Both p and q = (p − 1)/2 must pass primality testing to be published. The
collapse score and primality verdict together form the complete verification trace.

4 Million-Scale Validation
To assess the estimator and verification pipeline at scale, we tested 1,000,000 projected safe
prime candidates.

4.1 Experimental Setup
Each candidate was generated by the EchoPrime estimator from sequential indices. For each
candidate pair (p, q) where p = 2q + 1:

1. The collapse score was computed over a window T = 128.

2. Candidates were accepted if S(p, 128) ≥ 0.95 and S(q, 128) ≥ 0.95.

3. Accepted candidates were confirmed via deterministic primality testing.

4.2 Results
Of the 1,000,000 projected candidates, 76,144 were valid safe primes—a hit rate of approxi-
mately 7.6%.

Verified: 76,144 / 76,144 candidates passing threshold (100.00% confirmed prime)

All 76,144 candidates that passed the collapse score threshold were confirmed as valid safe
primes by deterministic primality testing. No false positives were recorded: every candidate
with S(p, 128) ≥ 0.95 and S(q, 128) ≥ 0.95 was indeed a safe prime.

4



4.3 Estimator Efficiency
The hit rate reflects the estimator’s ability to target regions of the number line where safe
primes cluster. At the 1,000,000-candidate scale, the observed rate was approximately 7.6%;
independent verification at 10,000 candidates yielded 9.74%, consistent with scale-dependent
density variation. For context, the asymptotic density of safe primes among odd numbers at
comparable scales is approximately 0.23%, meaning the estimator is roughly 33–42× more
efficient than uniform random sampling at the tested scale (∼30-bit candidates).

Note: These benchmarks were conducted at approximately 30-bit scale. Efficiency at
larger bit sizes (e.g., 1024-bit) has not been empirically validated and would depend on
recalibrating the estimator constant α for larger ranges. We do not claim efficiency gains at
scales beyond those tested.

4.4 Verifier Accuracy
The 100% confirmation rate across 76,144 candidates demonstrates that the collapse score
threshold of 0.95 is an effective pre-filter: it admits all true safe primes in the candidate space
while excluding composites. This is expected from the Lucas’ theorem basis—primes above
T will always score 1.0—but the empirical validation confirms consistent behavior across a
large sample.

5 Oracle Contract Architecture
The core of the EchoPrime system is a smart contract deployed on an Ethereum-compatible
blockchain. This contract serves as a public registry for verified safe prime submissions.

5.1 Storage and Submission
The contract maintains a mapping:

records[index]→ (p, q, scoreP, scoreQ, verified)

Each entry corresponds to a single safe prime submission, indexed by the deterministic
projection index. The stored tuple includes:

• p: the safe prime

• q = p−1
2

: the corresponding Sophie Germain prime

• scoreP, scoreQ: collapse scores for p and q

• verified: boolean indicating confirmed primality of both p and q

Submissions are recorded via:

5



function submitVerification(
uint256 index,
uint256 p,
uint256 scoreP,
uint256 scoreQ,
bool verified

) external;

Any party—ceremony coordinator, oracle bot, or protocol—can publish a safe prime and
its trace. Upon submission, the contract stores the record and emits a PrimeVerified event.

5.2 Event Trace
Every submission emits a standardized event:

event PrimeVerified(
uint256 index,
uint256 p,
uint256 scoreP,
uint256 scoreQ,
bool verified

);

These logs are permanently recorded on-chain and can be consumed by off-chain indexers,
ZK rollup coordinators, or ceremony orchestration systems. Observers can monitor for newly
published primes, filter by score threshold, or confirm whether a particular index has been
verified.

5.3 Query Interface
The registry supports public reads:

function getPrime(uint256 index) returns PrimeRecord

This enables on-chain and off-chain systems to retrieve verified primes and their associ-
ated metadata for downstream use in cryptographic protocols.

6 Comparison to Existing Methods
6.1 Conventional Safe Prime Generation
Standard safe prime generation follows a probabilistic process:

1. Sample a random odd integer q

2. Test if q is prime (typically Miller–Rabin [8, 9])

3. Compute p = 2q + 1

6



4. Test if p is prime

5. Repeat until success

This process depends on entropy sources, yields no structural trace, and produces outputs
that cannot be deterministically reconstructed by downstream verifiers.

6.2 Comparison Table

Feature Conventional Tools EchoPrime
Generation method RNG + trial/sieve Deterministic projection

from index
Primality testing Probabilistic (Miller–

Rabin)
Structural scoring + deter-
ministic confirmation

Reproducibility Non-deterministic Fully deterministic from in-
dex

Audit trail None On-chain trace with scores
and index

Setup transparency Opaque Publicly verifiable registry
Index → prime map-
ping

Not supported Direct, deterministic

6.3 What EchoPrime Does Not Replace
EchoPrime is not a replacement for standard primality testing algorithms or general-purpose
cryptographic libraries. Tools like OpenSSL, GMP, and libsodium provide efficient, well-
audited implementations of prime generation and testing. EchoPrime’s contribution is the
combination of deterministic index-based projection with on-chain auditability—creating a
verifiable provenance layer on top of standard cryptographic operations.

7 Use Cases
7.1 Trusted Setup Ceremonies
Zero-knowledge proving systems [1] (zkSNARKs, PLONK variants) require trusted setup
ceremonies where cryptographic parameters must be generated transparently. EchoPrime
allows ceremony coordinators to derive parameters from publicly auditable, collapse-verified
primes:

curveSeed← hash(p ∥ scoreP ∥ index)

This eliminates reliance on opaque entropy sources during setup and enables any participant
to verify the derivation.

7



7.2 MPC Group Parameters
Multiparty computation protocols [2] require agreement on group parameters, typically safe
primes for the group modulus. EchoPrime provides pre-verified, publicly registered safe
primes that all parties can independently confirm:

g ∈ Z∗
p, p ∈ EchoPrime registry

This avoids disputes over parameter sourcing in threshold cryptography, distributed key
generation, and secure multiparty signing.

7.3 Diffie–Hellman and RSA Parameters
Safe primes are directly used in Diffie–Hellman key exchange [3] (as the group modulus) and
in RSA key generation [4] (as prime factors of N = pq). EchoPrime provides a transparent
source of such primes with verifiable provenance, suitable for applications where parameter
auditability is required.

7.4 ZK Rollup Infrastructure
Layer-2 rollup systems require transparent, verifiable cryptographic parameters for curve
selection, proof system initialization, and trusted setup registries. EchoPrime’s on-chain
registry allows rollup protocols to reference publicly recorded safe primes with full trace
metadata, reducing trust assumptions in parameter sourcing.

7.5 Deterministic Key Derivation
EchoPrime’s index-to-prime mapping enables deterministic key derivation schemes where
cryptographic material is tied to a publicly auditable symbolic index rather than opaque
entropy. This supports reproducible wallet generation, multisig recovery, and identity key
derivation with verifiable provenance.

8 Cross-Chain Extensions
While EchoPrime is currently deployed on Ethereum-compatible chains, its deterministic
architecture is blockchain-agnostic.

8.1 Bitcoin Integration
Bitcoin’s limited scripting does not support complex on-chain verification, but EchoPrime
traces can be anchored to Bitcoin via several mechanisms:

• OP_RETURN commitments. A SHA-256 hash of the prime trace (p, q, scorep, scoreq, index)
can be published in an OP_RETURN output, creating a timestamped proof of existence
on Bitcoin.

8



• Sidechain deployment. Bitcoin-compatible sidechains such as Rootstock (RSK) and
Stacks support smart contracts and could host a full EchoPrime oracle instance.

• Cross-chain relay. Oracle protocols such as Chainlink or LayerZero can relay EchoPrime
traces from Ethereum to Bitcoin-aware systems.

8.2 Applications in Bitcoin Infrastructure
• Threshold signatures (MuSig2, FROST): EchoPrime primes can serve as verifi-

able group parameters for Taproot-based threshold schemes.

• Cross-chain custody: MPC key shares across Bitcoin and EVM chains can coordi-
nate around EchoPrime-verified safe primes.

• Audit-trail anchors: OP_RETURN commitments provide decentralized proofs-of-
trace for compliance and recovery workflows.

9 Future Work
Planned development focuses on extending the system’s reach and robustness:

• Large-scale empirical validation. Extend benchmarks to 512-bit and 1024-bit
candidates with recalibrated estimator constants, and publish results.

• Multi-chain deployment. Deploy oracle instances on additional EVM chains and
Layer-2 rollups to broaden accessibility.

• Public API and SaaS access. Provide a hosted API for prime generation, verifica-
tion, and registry queries, enabling integration without direct smart contract interac-
tion.

• Enterprise features. Support batch submissions, custom score thresholds, and pri-
vate oracle instances for organizations with specific compliance or parameter require-
ments.

• Extended scoring operators. Investigate alternative structural verification metrics
beyond the Lucas’ theorem-based collapse score, including tunable window sizes and
weighted scoring schemes.

• Formal security analysis. Commission independent review of the estimator distribu-
tion properties and the verification pipeline’s false-positive guarantees at cryptographic
scales.

9



10 Conclusion
EchoPrime provides a deterministic, auditable pipeline for safe prime generation and on-
chain publication. Its estimator maps natural number indices to candidate safe primes;
its verification layer, based on Lucas’ theorem, attaches a reproducible structural score to
each candidate; and its oracle contract permanently records verified primes with full trace
metadata on an Ethereum-compatible blockchain.

The system does not claim to replace established cryptographic libraries or primality
testing algorithms. Its contribution is the combination of deterministic index-based projec-
tion with on-chain auditability and structural verification traces. This creates a publicly
inspectable, reproducible record of cryptographic parameter provenance—a property not
provided by conventional generation methods.

Empirical validation across 1,000,000 candidates confirms a 7.6%–9.7% safe prime hit rate
(approximately 33–42× more efficient than random sampling at the tested 30-bit scale) with
100% verification accuracy across all accepted candidates. The on-chain oracle architecture
enables composable integration with ZK rollups, MPC protocols, trusted setup ceremonies,
and deterministic key derivation systems.

EchoPrime is available as a public oracle on Ethereum-compatible chains. Documenta-
tion, contract addresses, and API access are provided at www.echoprime.xyz.

References
[1] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-interactive zero

knowledge for a von Neumann architecture,” in Proceedings of the 23rd USENIX Security
Symposium, pp. 781–796, 2014.

[2] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed key generation
for discrete-log based cryptosystems,” Journal of Cryptology, vol. 20, no. 1, pp. 51–83,
2007.

[3] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions on
Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[4] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–
126, 1978.

[5] G. H. Hardy and J. E. Littlewood, “Some problems of ‘Partitio Numerorum’; III: On
the expression of a number as a sum of primes,” Acta Mathematica, vol. 44, pp. 1–70,
1923.

[6] P. T. Bateman and R. A. Horn, “A heuristic asymptotic formula concerning the distri-
bution of prime numbers,” Mathematics of Computation, vol. 16, no. 79, pp. 363–367,
1962.

[7] É. Lucas, “Théorie des fonctions numériques simplement périodiques,” American Jour-
nal of Mathematics, vol. 1, no. 2, pp. 184–196, 1878.

10



[8] G. L. Miller, “Riemann’s hypothesis and tests for primality,” Journal of Computer and
System Sciences, vol. 13, no. 3, pp. 300–317, 1976.

[9] M. O. Rabin, “Probabilistic algorithm for testing primality,” Journal of Number Theory,
vol. 12, no. 1, pp. 128–138, 1980.

[10] A. Granville, “Harald Cramér and the distribution of prime numbers,” Scandinavian
Actuarial Journal, vol. 1995, no. 1, pp. 12–28, 1995.

11


	Introduction
	Estimator Design
	Asymptotic Context
	Projection Formula
	Design Philosophy

	Structural Verification via Lucas' Theorem
	Mathematical Basis
	Role in the Pipeline

	Million-Scale Validation
	Experimental Setup
	Results
	Estimator Efficiency
	Verifier Accuracy

	Oracle Contract Architecture
	Storage and Submission
	Event Trace
	Query Interface

	Comparison to Existing Methods
	Conventional Safe Prime Generation
	Comparison Table
	What EchoPrime Does Not Replace

	Use Cases
	Trusted Setup Ceremonies
	MPC Group Parameters
	Diffie–Hellman and RSA Parameters
	ZK Rollup Infrastructure
	Deterministic Key Derivation

	Cross-Chain Extensions
	Bitcoin Integration
	Applications in Bitcoin Infrastructure

	Future Work
	Conclusion

